The Optimization on Ranks and Inertias of a Quadratic Hermitian Matrix Function and Its Applications
نویسنده
چکیده
We solve optimization problems on the ranks and inertias of the quadratic Hermitian matrix function Q − XPX∗ subject to a consistent system of matrix equations AX = C and XB = D. As applications, we derive necessary and sufficient conditions for the solvability to the systems of matrix equations and matrix inequalities AX = C,XB = D, and XPX∗ = (>, <, ≥, ≤)Q in the Löwner partial ordering to be feasible, respectively. The findings of this paper widely extend the known results in the literature.
منابع مشابه
Optimization problems on the rank and inertia of the Hermitian matrix expression A−BX − (BX)∗ with applications
We give in this paper some closed-form formulas for the maximal and minimal values of the rank and inertia of the Hermitian matrix expression A − BX ± (BX)∗ with respect to a variable matrix X. As applications, we derive the extremal values of the ranks/inertias of the matrices X and X ± X∗, where X is a (Hermitian) solution to the matrix equation AXB = C, respectively, and give necessary and s...
متن کاملAnalytical formulas for calculating extremal ranks and inertias of quadratic matrix-valued functions and their applications
A group of analytical formulas formulas for calculating the global maximal and minimal ranks and inertias of the quadratic matrix-valued function φ(X) = (AXB + C )M(AXB + C) +D are established and their consequences are presented, where A, B, C and D are given complex matrices with A and C Hermitian. As applications, necessary and sufficient conditions for the two general quadratic matrix-value...
متن کاملCompleting block Hermitian matrices with maximal and minimal ranks and inertias
For a Hermitian matrix with its main block diagonal given, this paper shows how to choose the off-diagonal blocks such that the resulting matrix has the maximal and minimal possible ranks and inertias, respectively. Some direct consequences and applications are also given.
متن کاملEla Completing Block Hermitian Matrices with Maximal and Minimal Ranks and Inertias
For a Hermitian matrix with its main block diagonal given, this paper shows how to choose the off-diagonal blocks such that the resulting matrix has the maximal and minimal possible ranks and inertias, respectively. Some direct consequences and applications are also given.
متن کاملAnalytical formulas for calculating the extremal ranks and inertias of A + BXB∗ when X is a fixed-rank Hermitian matrix
The rank of a matrix and the inertia of a square matrix are two of the most generic concepts in matrix theory for describing the dimension of the row/column vector space and the sign distribution of the eigenvalues of the matrix. Matrix rank and inertia optimization problems are a class of discontinuous optimization problems, in which decision variables are matrices running over certain matrix ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013